Leveraging reduced-order models for state estimation using deep learning
نویسندگان
چکیده
منابع مشابه
A Hybrid Optimization Algorithm for Learning Deep Models
Deep learning is one of the subsets of machine learning that is widely used in Artificial Intelligence (AI) field such as natural language processing and machine vision. The learning algorithms require optimization in multiple aspects. Generally, model-based inferences need to solve an optimized problem. In deep learning, the most important problem that can be solved by optimization is neural n...
متن کاملA Hybrid Optimization Algorithm for Learning Deep Models
Deep learning is one of the subsets of machine learning that is widely used in Artificial Intelligence (AI) field such as natural language processing and machine vision. The learning algorithms require optimization in multiple aspects. Generally, model-based inferences need to solve an optimized problem. In deep learning, the most important problem that can be solved by optimization is neural n...
متن کاملReduced-order State Estimation for Linear Time-varying Systems
We consider reduced-order and subspace state estimators for linear discrete-time systems with possibly time-varying dynamics. The reducedorder and subspace estimators are obtained using a finite-horizon minimization approach, and thus do not require the solution of algebraic Lyapunov or Riccati equations.
متن کاملError Estimation for Reduced-Order Models of Dynamical Systems
The use of reduced order models to describe a dynamical system is pervasive in science and engineering. Often these models are used without an estimate of their error or range of validity. In this paper we consider dynamical systems and reduced models built using proper orthogonal decomposition. We show how to compute estimates and bounds for these errors, by a combination of small sample stati...
متن کاملError Estimation for Reduced - Order Models of Dynamical Systems ∗ Chris
The use of reduced-order models to describe a dynamical system is pervasive in science and engineering. Often these models are used without an estimate of their error or range of validity. In this paper we consider dynamical systems and reduced models built using proper orthogonal decomposition. We show how to compute estimates and bounds for these errors by a combination of small sample statis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Fluid Mechanics
سال: 2020
ISSN: 0022-1120,1469-7645
DOI: 10.1017/jfm.2020.409